شار ریچی-بورگویگنون روی منیفلدهای سایا
author
Abstract:
This article doesn't have abstract
similar resources
منیفلدهای فینسلری اینشتینی و شار ریچی
در این پایان نامه، به بررسی فضاهای اینشتینی می پردازیم. فضاهای اینشتینی، ریمانی کاربرد فراوانی در فیزیک دارند. هندسه فینسلر این فضاها، آن چنان که باید مورد مطالعه قرار نگرفته است. هدف اصلی در این پایان نامه، مطالعه این فضاها برای تعمبم و به دست آوردن لم شور دوم برای فضاهای فینسلری خاص می باشدکه در واقع مقدمه ای برای پاسخ دادن به سوال معروف چرن در مورد پذیرش یک متر فینسلری از انحنای ریچی اسکالر ...
15 صفحه اولهندسی سازی 3 - خمینه ها از طریق شار ریچی
رده بندی رویه های بسته، نقطه عطفی در توسعه توپولوژی است چنان که اکنون این مطلب برای بیشتر دانشجویان دوره کارشناسی به عنوان مقدمه ای بر توپولوژی تدریس می شود. رده بندی خمینه های با بعد بیشتر، خیلی مشکل تر است. در حقیقت به علت پیچیدگی گروه بنیادی، رده بندی کاملی مانند آنچه درباره رویه ها وجود دارد، در بعدهای بزرگتر از 3 ممکن نیست. در این مقاله کار قابل توجه گریشا پرلمان را که ممکن است مساله رده ب...
full textرده هایی از منیفلدهای تقریبا سایا
در این پایان نامه زیرمنیفلدهای 3-اریب از منیفلدهای تقریبا سایای متریک 3-ساختار را معرفی می کنیم. با استفاده از مثال های غیر بدیهی وجود آن ها نشان داده شده است. پس از مشخصه سازی آن ها یک کران بالا برای انحنای ریچی زیرمنیفلد بر اساس انحنای میانگین به دست می آوریم. به علاوه زیرمنیفلدهای 3-نیم-اریب و 3-دو-اریب معرفی شده و برخی از خواص هندسی آن ها از جمله انتگرال پذیری و تماما ژئودزیک بودن بررسی ...
15 صفحه اولشار ریچی در بعد دو
شار ریچی را به وسیله ی معادله ی دیفرانسیل با مشتقات جزیی روی فضای متریک های یک منیفلد تعریف می کنیم که روی متر یک منیفلد عمل می کند و بی نظمی های آن را از بین می برد در این پروژه پس از معرفی پیش نیازها به معرفی اصل ماکسیمم می پردازیم که ابزار بسیار مهمی برای مطالعه معادلات با مشتقات جزیی از مرتبه دوم است،مانندمعادله حرارت که ساده ترین معادله سهموی است از این معادله برای قرار دادن کران ها روی ان...
مطلعی بر شار ریچی همیلتون
هدف اصلی این پایان نامه معرفی شار ریچی همیلتون است. شار ریچی یک معادله دیفرانسیل پاره ای است که در آن تانسور متریک در یک منیفلد ریمانی تحول می یابد. شار ریچی اخیرا برای اثبات دو قضیه بسیار مهم در توپولوژی با نام های هندسی سازی و حدس پوانکاره مورد استفاده قرار گرفته است. ما ابتدا به مطالعه هندسه دیفرانسیل مورد نیاز شار ریچی می پردازیم. در آخر شار ریچی را معرفی کرده و حل آن را در حالت خاص می بینیم.
My Resources
Journal title
volume 6 issue 4
pages 0- 0
publication date 2021-01
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023